Energy returned on energy invested

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

In energy economics and ecological energetics, energy returned on energy invested (EROEI or ERoEI), or energy return on investment (EROI), is the ratio of the amount of usable energy (the exergy) delivered from a particular energy resource to the amount of exergy used to obtain that energy resource.[1]

Arithmetically the EROEI can be defined as:

.[2]

When the EROEI of a source of energy is less than or equal to one, that energy source becomes a net "energy sink", and can no longer be used as a source of energy, but depending on the system might be useful for energy storage (for example a battery). A related measure Energy Stored On Energy Invested (ESOEI) is used to analyse storage systems.[3][4]

To be considered viable as a prominent fuel or energy source a fuel or energy must have an EROEI ratio of at least 3:1.[5][2]

History

The energy analysis field of study is credited with being popularized by Charles A. S. Hall, a Systems ecology and biophysical economics professor at the State University of New York. Hall applied the biological methodology, developed at an Ecosystems Marine Biological Laboratory, and then adapted that method to research human industrial civilization. The concept would have its greatest exposure in 1984, with a paper by Hall that appeared on the cover of the journal Science.[6][7]

Application to various technologies

Photovoltaic

Global PV market by technology in 2013.[8]:18,19

  multi-Si (54.9%)
  mono-Si (36.0%)
  CdTe (5.1%)
  a-Si (2.0%)
  CIGS (2.0%)

The issue is still subject of numerous studies, and prompting academic argument. That's mainly because the "energy invested" critically depends on technology, methodology, and system boundary assumptions, resulting in a range from a maximum of 2000 kWh/m2 of module area down to a minimum of 300 kWh/m2 with a median value of 585 kWh/m2 according to a meta-study.[9]

Regarding output, it obviously depends on the local insolation, not just the system itself, so assumptions have to be made.

Some studies (see below) include in their analysis that photovoltaic produce electricity, while the invested energy may be lower grade primary energy.

A 2015 review in Renewable and Sustainable Energy Reviews assessed the energy payback time and EROI of a variety of PV module technologies. In this study, which uses an insolation of 1700 kWh/m2/yr and a system lifetime of 30 years, mean harmonized EROIs between 8.7 and 34.2 were found. Mean harmonized energy payback time varied from 1.0 to 4.1 years.[10][better source needed]

Wind turbines

The EROI of wind turbines depends on invested energy in the turbine, produced energy, and life span of a turbine. In the scientific literature EROIs normally vary between 20 and 50.[11][better source needed]

Oil sands

Because much of the energy required for producing oil from oil sands (bitumen) comes from low value fractions separated out by the upgrading process, there are two ways to calculate EROEI, the higher value given by considering only the external energy inputs and the lower by considering all energy inputs, including self generated. One study found that in 1970 oil sands net energy returns was about 1.0 but by 2010 had increased to about 5.23.[12][clarification needed]

Non-manmade energy inputs

The natural or primary energy sources are not included in the calculation of energy invested, only the human-applied sources. For example, in the case of biofuels the solar insolation driving photosynthesis is not included, and the energy used in the stellar synthesis of fissile elements is not included for nuclear fission. The energy returned includes only human usable energy and not wastes such as waste heat.

Nevertheless, heat of any form can be counted where it is actually used for heating. However the use of waste heat in district heating and water desalination in cogeneration plants is rare, and in practice it is often excluded in EROEI analysis of energy sources.[clarification needed]

Competing methodology

In a 2010 paper by Murphy and Hall, the advised extended["Ext"] boundary protocol, for all future research on EROI, was detailed. In order to produce, what they consider, a more realistic assessment and generate greater consistency in comparisons, than what Hall and others view as the "weak points" in a competing methodology.[13] In more recent years however a source of continued controversy is the creation of a different methodology endorsed by certain members of the IEA which for example most notably in the case of photovoltaic solar panels, controversially generates more favorable values.[14][15]

In the case of photovoltaic solar panels, the IEA method tends to focus on the energy used in the factory process alone. In 2016, Hall observed that much of the published work in this field is produced by advocates or persons with a connection to business interests among the competing technologies, and that government agencies had not yet provided adequate funding for rigorous analysis by more neutral observers.[16][17]

Relationship to net energy gain

EROEI and Net energy (gain) measure the same quality of an energy source or sink in numerically different ways. Net energy describes the amounts, while EROEI measures the ratio or efficiency of the process. They are related simply by

or

For example, given a process with an EROEI of 5, expending 1 unit of energy yields a net energy gain of 4 units. The break-even point happens with an EROEI of 1 or a net energy gain of 0. The time to reach this break-even point is called energy payback period (EPP) or energy payback time (EPBT).[18][19]

Economic influence

Although many qualities of an energy source matter (for example oil is energy-dense and transportable, while wind is variable), when the EROEI of the main sources of energy for an economy fall that energy becomes more difficult to obtain and its relative price may increase.

In regard to fossil fuels, when oil was originally discovered, it took on average one barrel of oil to find, extract, and process about 100 barrels of oil. The ratio, for discovery of fossil fuels in the United States, has declined steadily over the last century from about 1000:1 in 1919 to only 5:1 in the 2010s.[2]

Since the invention of agriculture, humans have increasingly used exogenous sources of energy to multiply human muscle-power. Some historians have attributed this largely to more easily exploited (i.e. higher EROEI) energy sources, which is related to the concept of energy slaves. Thomas Homer-Dixon[20] argues that a falling EROEI in the Later Roman Empire was one of the reasons for the collapse of the Western Empire in the fifth century CE. In "The Upside of Down" he suggests that EROEI analysis provides a basis for the analysis of the rise and fall of civilisations. Looking at the maximum extent of the Roman Empire, (60 million) and its technological base the agrarian base of Rome was about 1:12 per hectare for wheat and 1:27 for alfalfa (giving a 1:2.7 production for oxen). One can then use this to calculate the population of the Roman Empire required at its height, on the basis of about 2,500–3,000 calories per day per person. It comes out roughly equal to the area of food production at its height. But ecological damage (deforestation, soil fertility loss particularly in southern Spain, southern Italy, Sicily and especially north Africa) saw a collapse in the system beginning in the 2nd century, as EROEI began to fall. It bottomed in 1084 when Rome's population, which had peaked under Trajan at 1.5 million, was only 15,000.

Evidence also fits the cycle of Mayan and Cambodian collapse too. Joseph Tainter[21] suggests that diminishing returns of the EROEI is a chief cause of the collapse of complex societies, which has been suggested as caused by peak wood in early societies. Falling EROEI due to depletion of high quality fossil fuel resources also poses a difficult challenge for industrial economies, and could potentially lead to declining economic output and challenge the concept (which is very recent when considered from a historical perspective) of perpetual economic growth.[22]

Tim Garrett links EROEI and inflation directly, based on a thermodynamic analysis that links current world energy consumption (Watts) to a historical accumulation of inflation-adjusted global wealth (US dollars) known as the Garrett Relation. This economic growth model indicates that global EROEI is the inverse of global inflation over a given time interval. Because the model aggregates supply chains globally, local EROEI is outside its scope.[23]

Criticism of EROEI

Measuring energy output is a solved problem, measuring the input remains highly debated.

EROEI is calculated by dividing the energy output by the energy input. Measuring total energy output is often easy, especially in the case for an electrical output where some appropriate electricity meter can be used. However, researchers disagree on how to determine energy input accurately and therefore arrive at different numbers for the same source of energy.[24]

How deep should the probing in the supply chain of the tools being used to generate energy go? For example, if steel is being used to drill for oil or construct a nuclear power plant, should the energy input of the steel be taken into account? Should the energy input into building the factory being used to construct the steel be taken into account and amortized? Should the energy input of the roads which are used to ferry the goods be taken into account? What about the energy used to cook the steelworkers' breakfasts? These are complex questions evading simple answers.[25] A full accounting would require considerations of opportunity costs and comparing total energy expenditures in the presence and absence of this economic activity.

However, when comparing two energy sources a standard practice for the supply chain energy input can be adopted. For example, consider the steel, but don't consider the energy invested in factories deeper than the first level in the supply chain. It is in part for these fully encompassed systems reasons, that in the conclusions of Murphy and Hall's paper in 2010, a EROI of 5 by their extended methodology is considered necessary to reach the minimum threshold of sustainability,[13] while a value of 12-13 by Hall's methodology is considered the minimum value necessary for technological progress and a society supporting high art.[14][15]

Richards and Watt propose an Energy Yield Ratio for photovoltaic systems as an alternative to EROEI (which they refer to as Energy Return Factor). The difference is that it uses the design lifetime of the system, which is known in advance, rather than the actual lifetime. This also means that it can be adapted to multi-component systems where the components have different lifetimes.[26]

Another issue with EROI that many studies attempt to tackle is that the energy returned can be in different forms, and these forms can have different utility. For example, electricity can be converted more efficiently than thermal energy into motion, due to electricity's lower entropy. In addition, the form of energy of the input can be completely different from the output. For example, energy in the form of coal could be used in the production of ethanol. This might have an EROEI of less than one, but could still be desirable due to the benefits of liquid fuels (assuming the latters are not used in the processes of extraction and transformation).

Additional EROEI Calculations

There are three prominent expanded EROEI calculations, they are point of use, extended and societal. Point of Use EROEI expands the calculation to include the cost of refining and transporting the fuel during the refining process. Since this expands the bounds of the calculation to include more production process EROEI will decrease.[2] Extended EROEI includes point of use expansions as well as including the cost of creating the infrastructure needed for transportation of the energy or fuel once refined.[27] Societal EROI is a sum of all the EROEIs of all the fuels used in a society or nation. A societal EROI has never been calculated and researchers believe it may currently be impossible to know all variables necessary to complete the calculation, but attempted estimates have been made for some nations. Calculations done by summing all of the EROEIs for domestically produced and imported fuels and comparing the result to the Human Development Index (HDI), a tool often used to understand well-being in a society.[28] According to this calculation, the amount of energy a society has available to them increases the quality of life for the people living in that country, and countries with less energy available also have a harder time satisfying citizens' basic needs.[29] This is to say that societal EROI and overall quality of life are very closely linked.

EROEI and payback periods of some types of power plants

The following table is comprised from a compilation of sources of different qualityGerman Wikipedia. The minimum requirement is a breakdown of the cumulative energy expenses according to material data. Frequently in literature harvest factors are reported, for which the origin of the values is not completely transparent. These are not included in this table.

The bold numbers are those given in the respective literature source, the normal printed ones are derived (see Mathematical Description).

Typ EROEI Amortization period Amortization period compared to an 'ideal' power station
EROEI Amortization period
Nuclear power a)
Pressurized water reactor, 100 % Centrifuge enrichment[30] 106 2 Months 315 17 Days
Pressurized water reactor, 83 % Centrifuge enrichment[30] 75 2 Months 220 17 Days
Fossil energy a)
Brown coal, Open-cast[30] 31 2 Months 90 23 Days
Black coal, underground mining without coal transportation[30] 29 2 Months 84 19 Days
Gas (CCGT), Natural gas[30] 28 9 Days 81 3 Days
Gas (CCGT), Bio gas[30] 3,5 12 Days 10 3 Days
Hydropower
River hydroelectric[30] 50 1 Year 150 8 Months
Solar thermal b)
Desert, parabolic troughs + phenyl compounds medium[30] 21 1.1 Years 62 4 Months
Wind energy b)
1,5 MW (E-66), 2000 Full load hours VLh (German coast)[30] 16 1.2 Years 48 5 Months
E-66), 2700 Full load hours VLh (German coast), shore)[31] 21 0.9 Years 63 3.7 Months
2,3 MW (E-82), 3200 Full load hours VLh (German coast), shore)[32][33] c) 51 4.7 Months 150 1.6 Months
200 MW park (5 MW installation), 4400 Full load hours VLh (offshore)[34] 16 1.2 Years 48 5 Months
Photovoltaics b)
Poly-silicon, roof installation, 1000 Full load hours VLh (South Germany)[30] 4,0 6 Years 12 2 Years
Poly-silicon, roof installation, 1800 Full load hours VLh (South Europe)[35] 7,0 3.3 Years 21 1.1 Years

a) The cost of fuel transportation is taken into account b) The values refer to the total energy output. The expense for storage power plants, seasonal reserves or conventional load balancing power plants is not taken into account. c) The data for the E-82 come from the manufacturer, but are confirmed by TÜV Rheinland.

ESOEI

ESOEI (or ESOIe) is used when EROEI is below 1. "ESOIe is the ratio of electrical energy stored over the lifetime of a storage device to the amount of embodied electrical energy required to build the device."[4]

Storage Technology ESOEI[4]
Lead acid battery 5
Zinc bromide battery 9
Vanadium redox battery 10
NaS battery 20
Lithium ion battery 32
Pumped hydroelectric storage 704
Compressed air energy storage 792

One of the notable outcomes of the Stanford University team's assessment on ESOI, was that if pumped storage was not available, the combination of wind energy and the commonly suggested pairing with battery technology as it presently exists, would not be sufficiently worth the investment, suggesting instead curtailment.[36]

EROEI under rapid growth

A related recent concern is energy cannibalism where energy technologies can have a limited growth rate if climate neutrality is demanded. Many energy technologies are capable of replacing significant volumes of fossil fuels and concomitant green house gas emissions. Unfortunately, neither the enormous scale of the current fossil fuel energy system nor the necessary growth rate of these technologies is well understood within the limits imposed by the net energy produced for a growing industry. This technical limitation is known as energy cannibalism and refers to an effect where rapid growth of an entire energy producing or energy efficiency industry creates a need for energy that uses (or cannibalizes) the energy of existing power plants or production plants.[37]

The solar breeder overcomes some of these problems. A solar breeder is a photovoltaic panel manufacturing plant which can be made energy-independent by using energy derived from its own roof using its own panels. Such a plant becomes not only energy self-sufficient but a major supplier of new energy, hence the name solar breeder. Research on the concept was conducted by Centre for Photovoltaic Engineering, University of New South Wales, Australia.[38][39] The reported investigation establishes certain mathematical relationships for the solar breeder which clearly indicate that a vast amount of net energy is available from such a plant for the indefinite future.[40] The solar module processing plant at Frederick, Maryland[41] was originally planned as such a solar breeder. In 2009 the Sahara Solar Breeder Project was proposed by the Science Council of Japan as a cooperation between Japan and Algeria with the highly ambitious goal of creating hundreds of GW of capacity within 30 years.[42] Theoretically breeders of any kind can be developed. In practice, nuclear breeder reactors are the only large scale breeders that have been constructed as of 2014, with the 600 MWe BN-600 and 800 MWe BN-800 reactor, the two largest in operation.

See also

References

  1. ^ Murphy, D.J.; Hall, C.A.S. (2010). "Year in review EROI or energy return on (energy) invested". Annals of the New York Academy of Sciences. 1185 (1): 102–118. Bibcode:2010NYASA1185..102M. doi:10.1111/j.1749-6632.2009.05282.x. PMID 20146764.
  2. ^ a b c d Hall, CA; Lambert, JG; Balogh, SB (2013). "EROI of different fuels and the implications for society". Energy Policy. 64: 141–52. doi:10.1016/j.enpol.2013.05.049.
  3. ^ "Why energy storage is a dead-end industry - Energy Storage Report". 15 October 2014.
  4. ^ a b c http://pubs.rsc.org/en/content/articlepdf/2013/ee/c3ee41973h
  5. ^ Atlason, R; Unnthorsson, R (2014). "Ideal EROI (energy return on investment) deepens the understanding of energy systems". Energy. 67: 241–45. doi:10.1016/j.energy.2014.01.096.
  6. ^ "Will Fossil Fuels be Able to Maintain Economic Growth? A Q&A with Charles Hall".
  7. ^ https://www.nytimes.com/gwire/2009/10/23/23greenwire-new-school-of-thought-brings-energy-to-the-dis-63367.html?pagewanted=all N.Y. Times article featuring Hall Retrieved November-3-09
  8. ^ "Photovoltaics Report" (PDF). Fraunhofer ISE. July 28, 2014. Archived (PDF) from the original on July 25, 2014. Retrieved August 31, 2014.
  9. ^ Dale, M.; et al. (2013). "Energy balance of the global photovoltaic (PV) industry -- is the PV industry a net electricity producer?. In". Environmental Science and Technology. 47 (7): 3482–3489. Bibcode:2013EnST...47.3482D. doi:10.1021/es3038824. PMID 23441588.
  10. ^ Bhandari; et al. (2015). "Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis. In". Renewable and Sustainable Energy Reviews. 47: 133–141. doi:10.1016/j.rser.2015.02.057.
  11. ^ Zimmermann (2013). "Parameterized tool for site specific LCAs of wind energy converters". The International Journal of Life Cycle Assessment. 18: 49–60. doi:10.1007/s11367-012-0467-y.
  12. ^ Brandt, A. R.; Englander, J.; Bharadwaj, S. (2013). "The energy efficiency of oil sands extraction: Energy return ratios from 1970 to 2010". Energy. 55: 693–702. doi:10.1016/j.energy.2013.03.080.
  13. ^ a b Ferroni, Ferruccio; Hopkirk, Robert J. (2016). "Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation". Energy Policy. 94: 336–344. doi:10.1016/j.enpol.2016.03.034.
  14. ^ a b IEEE spectrum, Argument Over the Value of Solar Focuses on Spain
  15. ^ a b Pickard, William F. (2014). "Energy return on energy invested (eroi): A quintessential but possibly inadequate metric for sustainability in a solar-powered world? [point of view]". Proceedings of the IEEE. 102 (8): 1118–1122. doi:10.1109/JPROC.2014.2332092.
  16. ^ the real eroi of photovoltaic systems professor hall weighs in
  17. ^ Hall, Charles (2016-05-26). "The real EROI of photovoltaic systems: professor Hall weighs in". Cassandra's Legacy. Ugo Bardi.
  18. ^ Marco Raugei, Pere Fullana-i-Palmer and Vasilis Fthenakis (March 2012). "The Energy Return on Energy Investment (EROI) of Photovoltaics: Methodology and Comparisons with Fossil Fuel Life Cycles" (PDF). Brookhaven National Laboratory. Archived (PDF) from the original on 8 March 2016.CS1 maint: uses authors parameter (link)
  19. ^ Ibon Galarraga, M. González-Eguino, Anil Markandya (1 January 2011). Handbook of Sustainable Energy. Edward Elgar Publishing. p. 37. ISBN 978-0857936387. Retrieved 9 May 2017 – via Google Books.CS1 maint: multiple names: authors list (link)
  20. ^ Homer-Dixon, Thomas (2007). The Upside of Down; Catastrophe, Creativity and the Renewal of Civilisation. Island Press. ISBN 978-1-59726-630-7.
  21. ^ Tainter, Joseph (1990). The Collapse of Complex Societies. Cambridge University Press. ISBN 978-0521386739.
  22. ^ Morgan, Tim (2013). Life After Growth. Petersfield, UK: Harriman House. ISBN 9780857193391.
  23. ^ Garrett, T. J. (2012). "No way out? The double-bind in seeking global prosperity alongside mitigated climate change". Earth System Dynamics. 3 (1): 1–17. arXiv:1010.0428. Bibcode:2012ESD.....3....1G. doi:10.5194/esd-3-1-2012.
  24. ^ Mason Inman. Behind the Numbers on Energy Return on Investment. Scientific American, April 1, 2013. Archive
  25. ^ Richards, Michael; Hall, Charles (2014). "Does a Change in Price of Fuel Affect GDP Growth? An Examination of the US Data from 1950–2013". Energies. 7 (10): 6558–6570. doi:10.3390/en7106558.
  26. ^ Richards, B.S.; Watt, M.E. (2006). "Permanently dispelling a myth of photovoltaics via the adoption of a new net energy indicator" (PDF). Renewable and Sustainable Energy Reviews. 11: 162–172. doi:10.1016/j.rser.2004.09.015.
  27. ^ Hall CA, Lambert JG, Balogh SB. 2013. EROEI of different fuels and the implications for society. Energy Policy. 141–52
  28. ^ Lambert JG, Hall CA, Balogh S, Gupta A, Arnold M. 2014. Energy, EROI and quality of life. Energy Policy.
  29. ^ Lambert JG, Hall CA, Balogh S, Gupta A, Arnold M. 2014. Energy, EROI and quality of life. Energy Policy. 153–67 & Arvesen A, Hertwich EG. 2014. More caution is needed when using life cycle assessment to determine energy return on investment (EROI). Energy Policy. 1–6
  30. ^ a b c d e f g h i j D. Weißbach et al. (2013): Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants. Energy, Band 52, S. 210 ff. doi:10.1016/j.energy.2013.01.029
  31. ^ E. Pick, Hermann-Josef Wagner: Beitrag zum kumulierten Energieaufwand ausgewählter Windenergiekonverter. Arbeitsbericht des Instituts für ökologisch verträgliche Energiewirtschaft, Universität Essen, 1998.
  32. ^ Mehr Windkraft an Land rückt Ökologie ins Blickfeld. In: vdi Nachrichten. 2. September 2011. Abgerufen am 17. September 2011.
  33. ^ Enercon Windblatt 4/2011 (PDF; 1,2 MB). Internetseite von Enercon. Abgerufen am 10. Januar 2012.
  34. ^ Rodoula Tryfonidou, Hermann-Josef Wagner: Offshore-Windkraft – Technikauswahl und aggregierte Ergebnisdarstellung. (Kurzfassung, PDF-Datei, 109 kB) Lehrstuhl für Energiesysteme und Energiewirtschaft, Ruhr-Universität, Bochum 2004.
  35. ^ Mariska de Wild-Scholten: Environmental profile of PV mass production: globalization. (PDF; 1,8 MB) 2011.
  36. ^ EROI energy return on investment energy storage
  37. ^ Pearce, J.M. (2008). "Limitations of Greenhouse Gas Mitigation Technologies Set by Rapid Growth and Energy Cannibalism". Klima. Archived from the original on 2009-08-17. Retrieved 2011-04-06.
  38. ^ "The Azimuth Project: Solar Breeder". Retrieved 2011-04-06.
  39. ^ Lindmayer, Joseph (1978). The solar breeder. Proceedings, Photovoltaic Solar Energy Conference, Luxembourg, September 27–30, 1977. Dordrecht: D. Reidel Publishing. pp. 825–835. Bibcode:1978pvse.conf..825L. ISBN 9027708894. OCLC 222058767.
  40. ^ Lindmayer, Joseph (1977). The Solar Breeder. NASA.
  41. ^ "The BP Solarex Facility Tour in Frederick, MD". Sustainable Cooperative for Organic Development. 2010-03-29. Retrieved 28 February 2013.
  42. ^ Koinuma, H.; Kanazawa, I.; Karaki, H.; Kitazawa, K. (Mar 26, 2009), Sahara solar breeder plan directed toward global clean energy superhighway, Science Council of Japan

External links