Ralf Reski

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Ralf Reski
Ralf-Reski 2018.jpg
Prof. Ralf Reski
Born (1958-11-18) November 18, 1958 (age 60)

Ralf Reski (born 18 November 1958 in Gelsenkirchen) is a German Professor of Plant Biotechnology and former Dean of the Faculty of Biology of the University of Freiburg.[1] He is also affiliated to the French École supérieure de biotechnologie Strasbourg (ESBS)[2] and Senior Fellow at the Freiburg Institute for Advanced Studies.[3]


Ralf Reski studied Biology, Chemistry and Pedagogy at the Universities of Giessen and Hamburg. He was awarded his doctorate in Genetics in 1990 by the University of Hamburg and received his habilitation in General Botany in 1994. From 1996 until 1999, he was a Heisenberg-Fellow of the German Research Foundation.[4]

He was appointed Distinguished Professor and entitled Ordinarius at the University of Freiburg in 1999, where he became Head of the newly established Department of Plant Biotechnology.[5] From 2001 until 2011, Reski was Director Plant Biotechnology at the Centre for Applied Biosciences (ZAB, University of Freiburg).[6] Also since 2010 he is elected senator and speaker in the academic senat of the university Freiburg.[7]

Reski is founding Principal Investigator (PI) of four Excellence Clusters: the Centre for Biological Signalling Studies (bioss),[8] the Centre for Integrative Biological Signalling Studies (CIBSS),[9] Living, Adaptive and Energy-Autonomous Materials Systems (livMATs),[10] and of the Spemann Graduate School of Biology and Medicine (SGBM).[11] Since 2011, he also is Senior Fellow at the Freiburg Institute for Advanced Studies (FRIAS). SGBM, bioss and FRIAS are funded within the German Universities Excellence Initiative.[12] Furthermore, Reski is a founding PI of the Freiburg Initiative for Systems Biology (FRISYS)[13] funded by the Federal Ministry of Education and Research (BMBF). Reski was one of the board members of the International Union of Biological Sciences (IUBS) from 2009 to 2012.[14] Since 2010, Reski is coordinator of QualFEEM, a TEMPUS-project for the improvement of Higher Education in the field of "environmental management and ecology" at the Russian Universities in Altai, Novosibirsk, Omsk and Tyumen.[15] In 2011 Reski was co-founder of the Trinational Institute for Plant Research (TIP).[16]

In 2011 Ralf Reski was elected as lifetime member of the Heidelberg Academy of Sciences and Humanities (German:Heidelberger Akademie der Wissenschaften).[17]

In 2012 he organized a Plant Biology Congress[18] whicht attracted 1000 researchers from about 60 countries.

In 2013 Reski became Senior Fellow at the University of Strasbourg Institute for Advanced Study (USIAS).[19]

In 2015 he became the project coordinator of the Erasmus Programme "Trans-regional environmental awareness for sustainable usage of water resources" – in short TREASURE-WATER [20] that addresses higher education and training for the sustainable management of shared natural water resources in the area of the Russian Federation and Kazakhstan.[21]


Reski's main area of research with more than 250 scientific publications[22] comprises the genetics, proteomics, metabolism, and cell development of moss plants, using the technique of homologous recombination for creating knockout mosses by gene targeting in a reverse genetics approach.[23] Reski and his coworkers have identified hitherto unknown genes with biotechnological implication for agriculture and forestry.[24] The cultivation of moss cells and their utilization for Molecular Farming is another main focal point of his research.[25]

In 1998, Reski proposed the moss Physcomitrella patens as a model plant in biological research.[26] Since then, he has contributed significantly towards mosses becoming a model plant in biological research on a worldwide scale. In 2004, Reski and colleagues from the United States, the United Kingdom and Japan successfully proposed the genome of Physcomitrella patens for complete sequencing at the Joint Genome Institute (JGI), a facility of the U.S. Department of Energy (DOE).[27] The genome was released in December 2007,[28] with the bioinformatic work spearheaded by Reski´s group[29] and financed by the German National Science Foundation (Deutsche Forschungsgemeinschaft DFG). To date, the Freiburg Chair of Plant Biotechnology hosts an online database of Physcomitrella patens comprising the genomic sequence, annotated gene models and supplemental information.[30] Due to its scientific and economic importance, the genome of Physcomitrella patens has been chosen as a "flagship plant genome" by the DOE JGI in 2010.[31]

Also in 1998, Reski and coworkers generated a knockout moss by deleting an ftsZ gene and thus identified the first gene essential in the division of an organelle in any eukaryote.[32] Based on the results of further research on the ftsZ-gene family, Ralf Reski coined the term "plastoskeleton", analogous to the term "cytoskeleton", in 2000 and presented a new concept in cell biology of how chloroplasts, the green cell organelles of plants, change shape and divide.[33][34][35]

In 1999, the chemical company BASF invested more than 30 Mio. DM in a four-year cooperation project with Reski to identify new genes which may be able to make crop plants more resistant to drought, cold and attack by pests. Plants with improved nutritional value (vitamins or polyunsaturated fatty acids) have also been in the research focus of their collaboration.[36] In the same year, Reski invented the moss bioreactor[37] and founded "greenovation Biotech GmbH",[38] a biotechnology company utilizing moss bioreactors for the production of pharmaceuticals.[39] In 2011, Reski and coworkers produced recombinant, biologically active human factor H in a moss bioreactor.[40] In 2017 the first clinical trial phase 1 was completed testing the enzyme Alpha-galactosidase, which was produced in moss, to treat Fabry disease.[41]

In 2010, Reski established the International Moss Stock Center (IMSC), which stores and freely distributes moss strains, transgenics and ecotypes. The IMSC assigns accession numbers that can be used in scientific publications to facilitate identification and availability of the respective samples.[42]

Also in 2010, Reski and colleagues discovered a new mechanism of gene regulation; the epigenetic gene silencing by microRNAs.[43][44]

Reski is directly involved in Mossclone, a European project (7th Framework Programme, FP7) which started in 2012 and aims to develop an air quality monitoring tool by using devitalized moss clones.

In 2016, Reski and colleagues identified a homeobox gene as master regulator for embryo development[45] and a basic genetic toolkit for stoma development[46] and in 2017 they described that the moss cuticle was ancestral to lignin evolution.[47]

In 2018, Reski and colleagues analysed the six RecQ proteins in Physcomitrella patens and in Arabidopsis thaliana.[48] They found that moss RecQ4, the ortholog of the human Bloom syndrome protein, acts as a repressor of homologous recombination, protects the genome from mutations, and is pivotal for embryogenesis and subsequent plant development.[49] In contrast, moss RecQ6 acts as a potent enhancer of gene targeting.[50]

Scientific board memberships

Editorial board memberships of scientific journals

  • 2002 – 2012 Plant Cell Reports[58][59]
  • 2004 – 2006 Plant Biology (Guest-Editor)
  • 2008 – 2013 Journal of Biomedicine and Biotechnology[60]
  • 2009 – 2012 Plant Cell Reports, Editor-in-Chief[61]
  • 2010 – 2012 Biology International[62]


  1. ^ CV Ralf Reski on University Homepage
  2. ^ Homepage of ESBS, German
  3. ^ Profile Ralf Reski on FRIAS homepage Archived 2012-04-01 at the Wayback Machine
  4. ^ Profile on researchgate.net
  5. ^ Article on Reski´s scientific career Archived 2012-03-27 at the Wayback Machine
  6. ^ Centre for Applied Biosciences, Plant Biotechnology Archived 2011-09-17 at the Wayback Machine
  7. ^ http://www.senat.uni-freiburg.de/
  8. ^ bioss homepage Archived 2012-05-19 at the Wayback Machine
  9. ^ website of Centre for Integrative Biological Signalling Studies (CIBSS)
  10. ^ website of Living, Adaptive and Energy-autonomous Materials Systems (livMatS)
  11. ^ Profile on SGBM homepage
  12. ^ Homepage University of Freiburg, Excellence Initiative
  13. ^ FRISYS homepage
  14. ^ Former board members of the IUBS
  15. ^ Environmental Management for Russia (Cordis wire)
  16. ^ Official TIP homepage
  17. ^ The members of the HAW since its foundation in the year 1909
  18. ^ "Archived copy". Archived from the original on 2013-01-06. Retrieved 2012-12-02.CS1 maint: archived copy as title (link)
  19. ^ "Archived copy". Archived from the original on 2013-11-01. Retrieved 2013-10-30.CS1 maint: archived copy as title (link)
  20. ^ University of Freiburg
  21. ^ official TREASURE WATER project website
  22. ^ ReskiLab publications
  23. ^ Reski, Ralf (1998). "Physcomitrella and Arabidopsis: The David and Goliath of reverse genetics". Trends in Plant Science. 3 (6): 209–210. doi:10.1016/S1360-1385(98)01257-6.
  24. ^ Reski, R.; Frank, W (2005). "Moss (Physcomitrella patens) functional genomics -- Gene discovery and tool development, with implications for crop plants and human health". Briefings in Functional Genomics and Proteomics. 4 (1): 48–57. doi:10.1093/bfgp/4.1.48. PMID 15975264.
  25. ^ Decker, Eva L.; Reski, Ralf (2007). "Moss bioreactors producing improved biopharmaceuticals". Current Opinion in Biotechnology. 18 (5): 393–8. doi:10.1016/j.copbio.2007.07.012. PMID 17869503.
  26. ^ Reski, R. (1998). "Development, genetics and molecular biology of mosses" (PDF). Botanica Acta. 111: 1–15. doi:10.1111/j.1438-8677.1998.tb00670.x.
  27. ^ Doe Joint Genome Institute: Why sequence Physcomitrella patens?
  28. ^ Rensing, Stefan A.; Lang, Daniel; Zimmer, Andreas D.; Terry, Astrid; Salamov, Asaf; Shapiro, Harris; Nishiyama, Tomoaki; Perroud, Pierre-François; Lindquist, Erika A.; Kamisugi, Yasuko; Tanahashi, Takako; Sakakibara, Keiko; Fujita, Tomomichi; Oishi, Kazuko; Shin-i, Tadasu; Kuroki, Yoko; Toyoda, Atsushi; Suzuki, Yutaka; Hashimoto, Shin-ichi; Yamaguchi, Kazuo; Sugano, Sumio; Kohara, Yuji; Fujiyama, Asao; Anterola, Aldwin; Aoki, Setsuyuki; Ashton, Neil; Barbazuk, W. Brad; Barker, Elizabeth; Bennetzen, Jeffrey L.; Blankenship, Robert (2008). "The Physcomitrella Genome Reveals Evolutionary Insights into the Conquest of Land by Plants". Science. 319 (5859): 64–9. Bibcode:2008Sci...319...64R. doi:10.1126/science.1150646. hdl:11858/00-001M-0000-0012-3787-A. PMID 18079367.
  29. ^ Schiermeier, Quirin (1999). "German/Swedish venture creates plant biotechnology giant". Nature. 397 (6717): 283. Bibcode:1999Natur.397..283S. doi:10.1038/16754.
  30. ^ database cosmoss.org
  31. ^ Hudson Alpha Genome Sequencing Center on flagship plant genomes
  32. ^ Strepp, René; Scholz, Sirkka; Kruse, Sven; Speth, Volker; Reski, Ralf (1998). "Plant Nuclear Gene Knockout Reveals a Role in Plastid Division for the Homolog of the Bacterial Cell Division Protein FtsZ, an Ancestral Tubulin". Proceedings of the National Academy of Sciences of the United States of America. 95 (8): 4368–73. Bibcode:1998PNAS...95.4368S. doi:10.1073/pnas.95.8.4368. JSTOR 44902. PMC 22495. PMID 9539743.
  33. ^ Kiessling, J.; Kruse, S.; Rensing, S. A.; Harter, K.; Decker, E. L.; Reski, R. (2000). "Visualization of a Cytoskeleton-like Ftsz Network in Chloroplasts". The Journal of Cell Biology. 151 (4): 945–50. doi:10.1083/jcb.151.4.945. PMC 2169431. PMID 11076976.
  34. ^ McFadden, G. I. (2000). "Skeletons in the Closet: How Do Chloroplasts Stay in Shape?". The Journal of Cell Biology. 151 (4): F19–22. doi:10.1083/jcb.151.4.F19. PMC 2169437. PMID 11076959.
  35. ^ Reski, Ralf (2002). "Rings and networks: The amazing complexity of FtsZ in chloroplasts". Trends in Plant Science. 7 (3): 103–5. doi:10.1016/S1360-1385(02)02232-X. PMID 11906832.
  36. ^ Schiermeier, Quirin (1999). "German/Swedish venture creates plant biotechnology giant". Nature. 397 (6717): 283. Bibcode:1999Natur.397..283S. doi:10.1038/16754.
  37. ^ Patent "Production of proteinaceous substances", on WIPO-database: [1]
  38. ^ Homepage greenovation Biotech GmbH, Profile of Ralf Reski Archived 2011-11-09 at the Wayback Machine
  39. ^ Decker, Eva L.; Reski, Ralf (2007). "Current achievements in the production of complex biopharmaceuticals with moss bioreactors". Bioprocess and Biosystems Engineering. 31 (1): 3–9. doi:10.1007/s00449-007-0151-y. PMID 17701058.
  40. ^ Büttner-Mainik, Annette; Parsons, Juliana; Jérôme, Hanna; Hartmann, Andrea; Lamer, Stephanie; Schaaf, Andreas; Schlosser, Andreas; Zipfel, Peter F.; Reski, Ralf; Decker, Eva L. (2011). "Production of biologically active recombinant human factor H in Physcomitrella". Plant Biotechnology Journal. 9 (3): 373–83. doi:10.1111/j.1467-7652.2010.00552.x. PMID 20723134.
  41. ^ Greenovation gelingt der Durchbruch Portal goingpublic
  42. ^ IMSC press release University of Freiburg
  43. ^ Khraiwesh, Basel; Arif, M. Asif; Seumel, Gotelinde I.; Ossowski, Stephan; Weigel, Detlef; Reski, Ralf; Frank, Wolfgang (2010). "Transcriptional Control of Gene Expression by MicroRNAs". Cell. 140 (1): 111–22. doi:10.1016/j.cell.2009.12.023. PMID 20085706.
  44. ^ Discovery: microRNAs can dirtectly turn off genes
  45. ^ Horst NA, A Katz, I Pereman, EL Decker, N Ohad, R Reski (2016): A single homeobox gene triggers phase transition, embryogenesis and asexual reproduction. Nature Plants 2, 15209. DOI: doi:10.1038/nplants.2015.209
  46. ^ Chater CC, RS Caine, M Tomek, S Wallace, Y Kamisugi, AC Cuming, D Lang, CA MacAlister, S Casson, DC Bergmann, EL Decker, W Frank, JE Gray, A Fleming, R Reski, DJ Beerling (2016): Origin and function of stomata in the moss Physcomitrella patens. Nature Plants 2, 16179. DOI: doi:10.1038/NPLANTS.2016.179
  47. ^ Renault H, A Alber, NA Horst, A Basilio Lopes, EA Fich, L Kriegshauser, G Wiedemann, P Ullmann, L Herrgott, M Erhardt, E Pineau, J Ehlting, M Schmitt, JKC Rose, R Reski, D Werck-Reichhart (2017): A phenol-enriched cuticle is ancestral to lignin evolution in land plants. Nature Communications 8, 14713. DOI: doi:10.1038/ncomms14713.
  48. ^ Wiedemann, G., N. van Gessel, F. Köchl, L. Hunn, K. Schulze, L. Maloukh, F. Nogué, E.L. Decker, F. Hartung, R. Reski (2018): RecQ helicases function in development, DNA-repair and gene targeting in Physcomitrella patens. Plant Cell 30, 717-736. DOI: doi:10.1105/tpc.17.00632
  49. ^ Wiedemann, G., N. van Gessel, F. Köchl, L. Hunn, K. Schulze, L. Maloukh, F. Nogué, E.L. Decker, F. Hartung, R. Reski (2018): RecQ helicases function in development, DNA-repair and gene targeting in Physcomitrella patens. Plant Cell 30, 717-736. DOI: doi:10.1105/tpc.17.00632
  50. ^ RecQ Proteins: Masters of Genome Surveillance. The Plant Cell: In a Nutshell. Plantae
  51. ^ http://www.bio-pro.de/magazin/index.html?lang=en&artikelid=/artikel/08000/index.html
  52. ^ Newspaper article on biosafety
  53. ^ Innovationsrat Baden-Württemberg Archived 2015-02-19 at the Wayback Machine
  54. ^ DNK-Presidency
  55. ^ VBIO Advisory board
  56. ^ IUBS board
  57. ^ Bestellung des wissenschaftlichen Beirats des CeBiTec
  58. ^ https://www.springer.com/life+sci/cell+biology/journal/299?detailsPage=editorialBoard
  59. ^ https://www.springer.com/life+sciences/cell+biology/journal/299?detailsPage=press
  60. ^ Sciencemag
  61. ^ Editorial board Plant Cell Reports
  62. ^ Editorial board Biology International

External links

News articles

See also

University of Freiburg Faculty of Biology