From Wikipedia, the free encyclopedia
Jump to: navigation, search
"Uut" redirects here. For other uses, see Uut (disambiguation).
Hydrogen (diatomic nonmetal)
Helium (noble gas)
Lithium (alkali metal)
Beryllium (alkaline earth metal)
Boron (metalloid)
Carbon (polyatomic nonmetal)
Nitrogen (diatomic nonmetal)
Oxygen (diatomic nonmetal)
Fluorine (diatomic nonmetal)
Neon (noble gas)
Sodium (alkali metal)
Magnesium (alkaline earth metal)
Aluminium (other metals)
Silicon (metalloid)
Phosphorus (polyatomic nonmetal)
Sulfur (polyatomic nonmetal)
Chlorine (diatomic nonmetal)
Argon (noble gas)
Potassium (alkali metal)
Calcium (alkaline earth metal)
Scandium (transition metal)
Titanium (transition metal)
Vanadium (transition metal)
Chromium (transition metal)
Manganese (transition metal)
Iron (transition metal)
Cobalt (transition metal)
Nickel (transition metal)
Copper (transition metal)
Zinc (transition metal)
Gallium (other metals)
Germanium (metalloid)
Arsenic (metalloid)
Selenium (polyatomic nonmetal)
Bromine (diatomic nonmetal)
Krypton (noble gas)
Rubidium (alkali metal)
Strontium (alkaline earth metal)
Yttrium (transition metal)
Zirconium (transition metal)
Niobium (transition metal)
Molybdenum (transition metal)
Technetium (transition metal)
Ruthenium (transition metal)
Rhodium (transition metal)
Palladium (transition metal)
Silver (transition metal)
Cadmium (transition metal)
Indium (other metals)
Tin (other metals)
Antimony (metalloid)
Tellurium (metalloid)
Iodine (diatomic nonmetal)
Xenon (noble gas)
Caesium (alkali metal)
Barium (alkaline earth metal)
Lanthanum (lanthanide)
Cerium (lanthanide)
Praseodymium (lanthanide)
Neodymium (lanthanide)
Promethium (lanthanide)
Samarium (lanthanide)
Europium (lanthanide)
Gadolinium (lanthanide)
Terbium (lanthanide)
Dysprosium (lanthanide)
Holmium (lanthanide)
Erbium (lanthanide)
Thulium (lanthanide)
Ytterbium (lanthanide)
Lutetium (lanthanide)
Hafnium (transition metal)
Tantalum (transition metal)
Tungsten (transition metal)
Rhenium (transition metal)
Osmium (transition metal)
Iridium (transition metal)
Platinum (transition metal)
Gold (transition metal)
Mercury (transition metal)
Thallium (other metals)
Lead (other metals)
Bismuth (other metals)
Polonium (other metals)
Astatine (metalloid)
Radon (noble gas)
Francium (alkali metal)
Radium (alkaline earth metal)
Actinium (actinide)
Thorium (actinide)
Protactinium (actinide)
Uranium (actinide)
Neptunium (actinide)
Plutonium (actinide)
Americium (actinide)
Curium (actinide)
Berkelium (actinide)
Californium (actinide)
Einsteinium (actinide)
Fermium (actinide)
Mendelevium (actinide)
Nobelium (actinide)
Lawrencium (actinide)
Rutherfordium (transition metal)
Dubnium (transition metal)
Seaborgium (transition metal)
Bohrium (transition metal)
Hassium (transition metal)
Meitnerium (unknown chemical properties)
Darmstadtium (unknown chemical properties)
Roentgenium (unknown chemical properties)
Copernicium (transition metal)
Ununtrium (unknown chemical properties)
Flerovium (unknown chemical properties)
Ununpentium (unknown chemical properties)
Livermorium (unknown chemical properties)
Ununseptium (unknown chemical properties)
Ununoctium (unknown chemical properties)


Ununtrium in the periodic table
General properties
Name, symbol, number ununtrium, Uut, 113
Pronunciation Listeni/nnˈtrəm/
Element category unknown
but probably a poor metal
Group, period, block 13, 7, p
Standard atomic weight [286]
Electron configuration Rn 5f14 6d10 7s2 7p1
2, 8, 18, 32, 32, 18, 3
Physical properties
Phase solid (predicted)123
Density (near r.t.) 16 (predicted)4 g·cm−3
Melting point 700 K, 430 °C, 810 (predicted)1 °F
Boiling point 1430 K, 1130 °C, 2070 (predicted)14 °F
Heat of fusion 7.61 (extrapolated)3 kJ·mol−1
Heat of vaporization 130 (predicted)24 kJ·mol−1
Atomic properties
Oxidation states 1, 2, 3, 5 (predicted)14
Ionization energies
1st: 704.9 (predicted)1 kJ·mol−1
2nd: 2238.5 (predicted)4 kJ·mol−1
3rd: 3203.3 (predicted)4 kJ·mol−1
Atomic radius 170 (predicted)1 pm
Covalent radius 172–180 (extrapolated)3 pm
CAS registry number 54084-70-7
Naming IUPAC systematic element name
Discovery Joint Institute for Nuclear Research and Lawrence Livermore National Laboratory (2003)
Most stable isotopes
Main article: Isotopes of ununtrium
iso NA half-life DM DE (MeV) DP
286Uut syn 20 s α 9.63 282Rg
285Uut syn 5.5 s α 9.74, 9.48 281Rg
284Uut syn 0.48 s α 10.00 280Rg
283Uut syn 0.10 s α 10.12 279Rg
282Uut syn 70 ms α 10.63 278Rg
278Uut syn 0.24 ms α 11.68 274Rg
· references

Ununtrium is the temporary name of a chemical element with the temporary symbol Uut and atomic number 113. Also known as eka-thallium or simply element 113, is an extremely radioactive synthetic element (an element that can be created in a laboratory but is not found in nature); the most stable known isotope, ununtrium-286, has a half-life of 20 seconds. Ununtrium was first created in 2003 by the Joint Institute for Nuclear Research in Dubna, Russia.

In the periodic table, it is a p-block transactinide element. It is a member of the 7th period and is placed in the boron group, although no chemical experiments have been carried out to confirm that it behaves as the heavier homologue to thallium in the boron group. Ununtrium is calculated to have some similar properties to its lighter homologues, boron, aluminium, gallium, indium, and thallium, although it should also show several major differences from them. Unlike all the other p-block elements, it is predicted to show some transition metal character.


Dubna–Livermore collaboration

The first report of ununtrium was in August 2003 when it was identified as an alpha decay product of element 115, ununpentium. These results were published on February 1, 2004, by a team composed of Russian scientists at Dubna (Joint Institute for Nuclear Research), and American scientists at the Lawrence Livermore National Laboratory:56

+ 48
+ 3 1
+ α
+ 48
+ 4 1
+ α

The Dubna–Livermore collaboration has strengthened their claim for the discovery of ununtrium by conducting chemical experiments on the final decay product 268Db. In experiments in June 2004 and December 2005, this dubnium isotope was successfully identified by extracting the final decay products, measuring spontaneous fission (SF) activities and using chemical identification techniques to confirm that they behave like a group 5 element (as dubnium is known to be in group 5 of the periodic table).17 Both the half-life and decay mode were confirmed for the proposed 268Db which lends support to the assignment of the parent and daughter nuclei to ununpentium and ununtrium respectively.78 Further experiments at Dubna in 2005 have fully confirmed the decay data for ununpentium and ununtrium, but in 2011, the IUPAC/IUPAP Joint Working Party (JWP) did not recognize the two elements as having been discovered because current theory could not distinguish between group 4 and group 5 elements by their chemical properties with sufficient confidence, and the identification of the daughter dubnium isotope was the most important factor in confirming the discovery of ununpentium and ununtrium.9


On July 23, 2004, a team of Japanese scientists at RIKEN bombarded a target of bismuth-209 with accelerated nuclei of zinc-70 and detected a single atom of the isotope ununtrium-278. They published their results on September 28, 2004:10

+ 70
+ 1

Previously, in 2000, a team led by P. A. Wilk identified the decay product 266Bh as decaying with identical properties to what the Japanese team had observed, thus lending support for their claim. However, they also observed the daughter of 266Bh, 262Db, undergo alpha decay instead of spontaneous fission (the Japanese team observed the latter decay mode).9

The RIKEN team produced a further atom on April 2, 2005, although the decay data were slightly different from the first chain, perhaps due to either the formation of a metastable state or an alpha particle escaping from the detector before depositing its full energy. Due to these inconsistencies in the decay data, the small number of ununtrium atoms produced, and the lack of unambiguous anchors to known isotopes, the JWP did not accept this as a conclusive discovery of ununtrium in 2011.9

Most recently, production and identification of another 278Uut nucleus occurred at RIKEN on August 12, 2012.1112 In this case, a series of six alpha decays was observed, leading down to an isotope of mendelevium:

+ α270
+ α266
+ α262
+ α258
+ α254
+ α

This decay chain differed from the previous observations at RIKEN mainly in the decay mode of dubnium, which was previously observed to undergo spontaneous fission, but in this case instead alpha decayed. Because the alpha decay of dubnium-262 to lawrencium-258 is well known, this provides unambiguous proof that element 113 is the origin of the chain. The scientists on this team calculated the probability of accidental coincidence to be 10−28, or totally negligible.11


Ununtrium is the lightest element that has not yet received an official name. Using Mendeleev's nomenclature for unnamed and undiscovered elements, ununtrium should be known as eka-thallium or dvi-indium. In 1979 IUPAC published recommendations according to which the element was to be called ununtrium (with the corresponding symbol of Uut),13 a systematic element name as a placeholder, until the discovery of the element is confirmed and a name is decided on. The recommendations are largely ignored among scientists, who call it "element 113", with the symbol of (113) or even simply 113.1

Claims to the discovery of ununtrium have been put forward by both the Dubna and RIKEN teams. The IUPAC/IUPAP Joint Working Party (JWP) will decide to whom the right to suggest a name will be given. In 2011, the IUPAC evaluated the 2004 RIKEN experiments and 2004 and 2007 Dubna experiments, and concluded that they did not meet the criteria for discovery.9

On August 12, 2012, researchers at the RIKEN Nishina Center for Accelerator-Based Science in Japan, claimed to have synthesised "element 113" by colliding zinc nuclei (with 30 protons each) into a thin layer of bismuth (which contains 83 protons). If the discovery gets approved by The IUPAC/IUPAP Joint Working Party (JWP), this will be the first time in history that a team of Asian physicists will get to name a new element.14

The following names have been suggested by the above-mentioned teams claiming discovery:

Group Proposed name Derivation
RIKEN Japonium15 Japan: country of group claimants
Rikenium15 RIKEN: institute of group claimants
Nishinanium16 Yoshio Nishina, Japanese physicist


Main article: Isotopes of ununtrium
List of ununtrium isotopes
278Uut 0.24 ms α 2004 209Bi(70Zn,n)10
282Uut 70 ms α 2006 237Np(48Ca,3n)18
283Uut 0.10 s α 2003 287Uup(—,α)18
284Uut 0.48 s α 2003 288Uup(—,α)18
285Uut 5.5 s α 2009 293Uus(—,2α)19
286Uut 20 s α 2009 294Uus(—,2α)19
287Uut 20? min α, SF ? unknown

Ununtrium has no stable or naturally-occurring isotopes. Several radioactive isotopes have been synthesized in the laboratory, either by fusing two atoms or by observing the decay of heavier elements. Six different isotopes of ununtrium have been reported with atomic masses 278 and 282–286; they all decay through alpha decay.17

Stability and half-lives

A 3D graph of stability of elements vs. number of protons Z and neutrons N, showing a "mountain chain" running diagonally through the graph from the low to high numbers, as well as an "island of stability" at high N and Z.
3-dimensional rendering of the theoretical island of stability around N=178 and Z=118

All ununtrium isotopes are extremely unstable and radioactive; however, the heavier ununtrium isotopes are more stable than the lighter. The most stable known ununtrium isotope, 286Uut, is also the heaviest known ununtrium isotope; it has a half-life of 20 seconds. The isotope 285Uut has been reported to also have a half-life of over a second. The isotopes 284Uut and 283Uut have half-lives of 0.48 and 0.10 seconds respectively. The remaining two isotopes have half-lives between 0.1 and 100 milliseconds: 282Uut has a half-life of 70 milliseconds, and 278Uut, the lightest known ununtrium isotope, is also the shortest-lived known ununtrium isotope, with a half-life of just 0.24 milliseconds. It is predicted that even heavier undiscovered ununtrium isotopes could be much more stable: for example, 287Uut is predicted to have a half-life of around 20 minutes, close to two orders of magnitude more than that of 286Uut.17

Theoretical estimates of alpha decay half-lives of isotopes of ununtrium are in good agreement with the experimental data.20 The undiscovered isotope 293Uut has been predicted to be the most stable towards beta decay;21 however, no known ununtrium isotope has been observed to undergo beta decay.17

The stability of nuclei decreases greatly with the increase in atomic number after plutonium, the heaviest primordial element, so that all isotopes with an atomic number above 101 decay radioactively with a half-life under a day, with the exception of dubnium-268. Nevertheless, because of reasons not very well understood yet, there is a slight increased nuclear stability around atomic numbers 110114, which leads to the appearance of what is known in nuclear physics as the "island of stability". This concept, proposed by University of California professor Glenn Seaborg, explains why superheavy elements last longer than predicted.22

Predicted properties

Atomic energy levels of outermost s, p, and d electrons of thallium and ununtrium23

Ununtrium is the first member of the 7p series of elements and the heaviest boron group element on the periodic table, below boron, aluminium, gallium, indium, and thallium. It is predicted to show many differences from its lighter homologues: a largely contributing effect is the spin–orbit (SO) interaction. It is especially strong for the superheavy elements, because their electrons move much faster than in lighter atoms, at velocities comparable to the speed of light, which is where the differences arise from.24 In relation to ununtrium atoms, it lowers the 7s and the 7p electron energy levels (stabilizing the corresponding electrons), but two of the 7p electron energy levels are stabilized more than the other four.25 The stabilization of the 7s electrons is called the inert pair effect, and the effect "tearing" the 7p subshell into the more stabilized and the less stabilized parts is called the subshell splitting. Computation chemists see the split as a change of the second (azimuthal) quantum number l from 1 to 1/2 and 3/2 for the more stabilized and less stabilized parts of the 7p subshell, respectively.24note 1 For many theoretical purposes, the valence electron configuration may be represented to reflect the 7p subshell split as 7s27p1/21.1 These effects stabilize lower oxidation states: the first ionization energy of ununtrium is expected to be 7.306 eV, the highest among the boron group elements. Hence, the most stable oxidation state of ununtrium is predicted to be the +1 state,1 and ununtrium is expected to be less reactive than thallium.4 Differences for other electron levels also exist. For example, the 6d electron levels (also split in halves, with four being 6d3/2 and six being 6d5/2) are both raised, so that they are close in energy to the 7s ones.25 Thus, the 6d electron levels, being destabilized, should still be able to participate in chemical reactions in ununtrium1 (as well as in the next 7p element, flerovium),4 thus making it behave in some ways like transition metals and allow higher oxidation states.1 Ununtrium should hence also be able to show stable +2, +3 and +5 oxidation states. However, the +3 state should still be less stable than the +1 state, following periodic trends. Ununtrium should be the most electronegative among all the boron group elements:1 for example, in the compound UutUus, the negative charge is expected to be on the ununtrium atom rather than the ununseptium atom, the opposite of what would be expected from simple periodicity.23 The electron affinity of ununtrium is calculated to be around 0.68 eV; in comparison, that of thallium is 0.4 eV.1 The high electron affinity and electronegativity of ununtrium are due to it being only one electron short of the closed-shell valence electron configuration of flerovium (7s27p1/22).1

The simplest possible ununtrium compound is the monohydride, UutH. The bonding is provided by the 7p1/2 electron of ununtrium and the 1s electron of hydrogen. However, the SO interaction causes the binding energy of ununtrium monohydride to be reduced by about 1 eV1 and the ununtrium–hydrogen bond length to decrease as the bonding 7p1/2 orbital is relativistically contracted. The analogous monofluoride (UutF) should also exist.23 Ununtrium should also be able to form the trihydride (UutH3), trifluoride (UutF3), and trichloride (UutCl3), with ununtrium in the +3 oxidation state. Because the 6d electrons are involved in bonding instead of the 7s ones, these molecules are predicted to be T-shaped and not trigonal planar. Although the polyfluoride anion UutF
should be stable, the corresponding neutral fluoride UutF5 should be unstable, spontaneously decomposing into the trifluoride and elemental fluorine. Ununtrium(I) is predicted to be more similar to silver(I) than thallium(I):1 the Uut+ ion is expected to more willingly bind anions, so that UutCl should be quite soluble in an excess of hydrochloric acid or in ammonia while TlCl is not. Additionally, in contrast to the strongly basic TlOH, ununtrium(I) should instead form Uut2O, which would be weakly water-soluble and readily ammonia-soluble.4

Ununtrium is expected to be much denser than thallium, having a predicted density of about 16 to 18 g/cm3, due to the relativistic stabilization and contraction of its 7s and 7p1/2 orbitals.123 This is because calculations estimate it to have an atomic radius of about 170 pm, the same as that of thallium, even though periodic trends would predict it to have an atomic radius larger than that of thallium due to it being one period further down in the periodic table.1 The melting and boiling points of ununtrium are not definitely known, but have been calculated to be 430 °C and 1100 °C respectively, exceeding the values for gallium, indium, and thallium, following periodic trends.12

See also


  1. ^ The quantum number corresponds to the letter in the electron orbital name: 0 to s, 1 to p, 2 to d, etc. See azimuthal quantum number for more information.


  1. ^ a b c d e f g h i j k l m n o p q r s t u Haire, Richard G. (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean. The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 1-4020-3555-1. 
  2. ^ a b c Seaborg, Glenn T. (c. 2006). "transuranium element (chemical element)". Encyclopædia Britannica. Retrieved 2010-03-16. 
  3. ^ a b c Bonchev, Danail; Kamenska, Verginia (1981). "Predicting the Properties of the 113–120 Transactinide Elements". J. Phys. Chem. 85: 1177–1186. 
  4. ^ a b c d e f g h i Fricke, Burkhard (1975). "Superheavy elements: a prediction of their chemical and physical properties". Recent Impact of Physics on Inorganic Chemistry 21: 89–144. doi:10.1007/BFb0116498. Retrieved 4 October 2013. 
  5. ^ "Experiments on the synthesis of element 115 in the reaction 243Am(48Ca,xn)291-x115", Oganessian et al., JINR Preprints, 2003. Retrieved on 3 March 2008
  6. ^ Oganessian, Yu. Ts.; Utyonkoy, V.; Lobanov, Yu.; Abdullin, F.; Polyakov, A.; Shirokovsky, I.; Tsyganov, Yu.; Gulbekian, G.; Bogomolov, S.; Mezentsev, A. N. et al. (2004). "Experiments on the synthesis of element 115 in the reaction 243Am(48Ca,xn)291-x115". Physical Review C 69 (2): 021601. Bibcode:2004PhRvC..69b1601O. doi:10.1103/PhysRevC.69.021601. 
  7. ^ a b "Results of the experiment on chemical identification of Db as a decay product of element 115", Oganessian et al., JINR preprints, 2004. Retrieved on 3 March 2008
  8. ^ Oganessian, Yu. Ts.; Utyonkov, V.; Dmitriev, S.; Lobanov, Yu.; Itkis, M.; Polyakov, A.; Tsyganov, Yu.; Mezentsev, A.; Yeremin, A.; Voinov, A. A. et al. (2005). "Synthesis of elements 115 and 113 in the reaction 243Am + 48Ca". Physical Review C 72 (3): 034611. Bibcode:2005PhRvC..72c4611O. doi:10.1103/PhysRevC.72.034611. 
  9. ^ a b c d Barber, Robert C.; Karol, Paul J; Nakahara, Hiromichi; Vardaci, Emanuele; Vogt, Erich W. (2011). "Discovery of the elements with atomic numbers greater than or equal to 113 (IUPAC Technical Report)". Pure Appl. Chem. 83 (7): 1485. doi:10.1351/PAC-REP-10-05-01. 
  10. ^ a b Morita, Kosuke; Morimoto, Kouji; Kaji, Daiya; Akiyama, Takahiro; Goto, Sin-ichi; Haba, Hiromitsu; Ideguchi, Eiji; Kanungo, Rituparna; Katori, Kenji; Koura, Hiroyuki; Kudo, Hisaaki; Ohnishi, Tetsuya; Ozawa, Akira; Suda, Toshimi; Sueki, Keisuke; Xu, HuShan; Yamaguchi, Takayuki; Yoneda, Akira; Yoshida, Atsushi; Zhao, YuLiang (2004). "Experiment on the Synthesis of Element 113 in the Reaction 209Bi(70Zn,n)278113". Journal of the Physical Society of Japan 73 (10): 2593–2596. Bibcode:2004JPSJ...73.2593M. doi:10.1143/JPSJ.73.2593. 
  11. ^ a b K. Morita et al.; Morimoto, Kouji; Kaji, Daiya; Haba, Hiromitsu; Ozeki, Kazutaka; Kudou, Yuki; Sumita, Takayuki; Wakabayashi, Yasuo; Yoneda, Akira; Tanaka, Kengo et al. (2012). "New Results in the Production and Decay of an Isotope, 278113, of the 113th Element". Journal of the Physical Society of Japan 81 (10): 103201. arXiv:1209.6431. Bibcode:2012JPSJ...81j3201M. doi:10.1143/JPSJ.81.103201. 
  12. ^ "Search for element 113 concluded at last". Press Release. RIKEN. 27 September 2012. Retrieved 27 September 2012. 
  13. ^ Chatt, J. (1979). "Recommendations for the Naming of Elements of Atomic Numbers Greater than 100". Pure Appl. Chem. 51 (2): 381–384. doi:10.1351/pac197951020381. 
  14. ^ "Element 113: Ununtrium Reportedly Synthesised In Japan". Huffington Post. September 2012. Retrieved 22 April 2013. 
  15. ^ a b <Please add first missing authors to populate metadata.> (November 2004). "Discovering element 113". Riken News 11 (281). Retrieved 9 February 2008. 
  16. ^ "新元素113番、日本の発見確実に 合成に3回成功". Nihon Keizai Shimbun (in Japanese). 2012-09-27. Retrieved 2012-10-13. 
  17. ^ a b c d e Sonzogni, Alejandro. "Interactive Chart of Nuclides". National Nuclear Data Center: Brookhaven National Laboratory. Retrieved 2008-06-06. 
  18. ^ a b c Oganessian, Yu. Ts.; Penionzhkevich, Yu. E.; Cherepanov, E. A. (2007). "Heaviest Nuclei Produced in 48Ca-induced Reactions (Synthesis and Decay Properties)". AIP Conference Proceedings 912. p. 235. doi:10.1063/1.2746600. 
  19. ^ a b Oganessian, Y. T.; Abdullin, F. S.; Bailey, P. D. et al. (2010). "Synthesis of a New Element with Atomic Number Z=117". Physical Review Letters 104 (14): 142502. Bibcode:2010PhRvL.104n2502O. doi:10.1103/PhysRevLett.104.142502. PMID 20481935. 
  20. ^ Chowdhury, P. Roy; Basu, D. N. and Samanta, C. (2007). "α decay chains from element 113". Phys. Rev. C 75 (4): 047306. arXiv:0704.3927. Bibcode:2007PhRvC..75d7306C. doi:10.1103/PhysRevC.75.047306. 
  21. ^ Nie, G. K. (2005). "Charge radii of β-stable nuclei". Modern Physics Letters A 21 (24): 1889. arXiv:nucl-th/0512023. Bibcode:2006MPLA...21.1889N. doi:10.1142/S0217732306020226. 
  22. ^ Considine, Glenn D.; Kulik, Peter H. (2002). Van Nostrand's scientific encyclopedia (9 ed.). Wiley-Interscience. ISBN 978-0-471-33230-5. OCLC 223349096. 
  23. ^ a b c d Stysziński, Jacek (2010). Why do we Need Relativistic Computational Methods?. pp. 139–146. doi:10.1007/9781402099755_3. 
  24. ^ a b Thayer, John S. (2010). Chemistry of Heavier Main Group Elements. pp. 63–67. doi:10.1007/9781402099755_2. 
  25. ^ a b Fægri, K.; Saue, T. (2001). "Diatomic molecules between very heavy elements of group 13 and group 17: A study of relativistic effects on bonding". The Journal of Chemical Physics 115 (6): 2456. Bibcode:2001JChPh.115.2456F. doi:10.1063/1.1385366. 

External links